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Abstract. A class of Langevin-like equations (non-Markovian processes) are studied in the
presence of non-natural boundary conditions. Exact results for all cumulants and the corresponding
Kolmogorov hierarchy of distributions are given in terms of our functional approach we previously
reported (1997J. Phys. A: Math. Gen.30 8427). The generalized Wiener processes—on finite
domains—are completely characterized for reflecting and periodic boundary conditions. Some
examples are given to show the behaviour of the moments and the probability distributions for
different noises. The interplay between the boundary conditions and the structure of the noises is
also pointed out.

1. Introduction

The behaviour of systems under the effect of noise has attracted the interest of many workers
for many years [1,2]. In particular, stochastic equations to model relaxation have been studied
for several purposes [3, 4], and by means of different approximations [5]. As is well known,
when the random force is Gaussian and white, Fokker–Planck equations for the distributions
are available. In general, if any other noise is utilized, an individual and particular treatment is
required. This is true even with linear stochastic differential equations (SDEs). Nevertheless,
general methods to characterize some non-Markovian processes can be constructed [6]. In
[6] (from now on referred to as paper I) we developed a functional approach in order
to characterize Langevin-like equations—with natural boundary conditions—and driven by
arbitrary structures of noise. From that approach it is possible to construct the characteristic
functional of the processes, from which all statistical information can be obtained, hence
providing a systematic way to calculate exact properties for a large class of non-Markovian
processes. We remark that in order to obtain the characteristic functional of the non-Markovian
processes, it is only necessary to know the characteristic functional of the noise.

Recently there has been some interest in the effects of the boundaries on finite non-
Markovian diffusion systems. This problem, to our knowledge, has only been treated with
dichotomous noise [7]. Therefore, the principal object of this paper is to extend our functional
approach to a particular class offinitenon-Markovian processes, i.e. when there exist boundary
conditions (BC) on the domain of interestD and when the noise—in the corresponding SDE—
is an arbitrary stochastic process (SP)ξ(t) characterized by its functionalGξ([k(t)]). Once
again we note that our approach isexactand provides the starting point to obtain, in a systematic
way, higher-order cumulants and also the whole Kolmogorov hierarchy.
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In this paper we prove two theorems in order to be able to study a family of finite systems
with periodic and reflecting BC. We conclude that if we know the characteristic functional of
the unbounded processGX0([k(t)]) (i.e. the SPX0(t) with natural BC) the restricted process
X(t) (i.e. the finite system) can be completely characterized. We remark that due to the fact
that the SPX(t) could be non-Markovian, there is not a clear partial differential equation
available for its 1-time probability distribution, and this fact is even worse if we want to know
somen-time joint probability distribution; thus we make not use of any partial differential
equation approach. This is why we are going to start constructing, explicitly, the stochastic
realizations satisfying the BC using the well known method of images [9].

We have exemplified our method by calculating probability distributions and moments
of some generalized Wiener SP. Then we extend previous studies, in several respect, to
analyse the interplay between the BC and the structure of different random forces, for example
Gaussian, dichotomous, Poisson and radioactive noises. Even when some of these structures
of noise induce in the distributionP(x, t) rare events, which look like a discontinuity (Dirac
delta boundary or front moving in the distribution), we have shown that their corresponding
characteristic functions are continuous, leading therefore to continuous average values. As a
result of the noise structure, we are going to show that these averages have—in general—an
unusual oscillatory behaviour. In the case whenξ(t) is a Gaussian white noise, of course, our
results coincide with those that can be obtained by Fokker–Planck dynamics.

The time-dependentgeneralized Wiener SPX(t) (i.e. when its coefficient is explicitly
time-dependent) can also be obtained in a similar way, as we reported in paper I. This case
corresponds to the analysis of a non-autonomous SDE with BC and in presence of an arbitrary
random forceξ(t).

A semi-infinite domain has also been worked out. The generalized Ornstein–Uhlenbeck
processV (t), which can also be seen as a circuit equation for a (L-R) electric system in the
presence of an arbitrary fluctuating emf [8], is a particular case—with an even potential—that
can be analysed in the present framework.

In appendix A we show the general expressions for the whole Kolmogorov hierarchy.
In order to make this paper self-contained, in appendix B we give a small review of paper
I and present some noise functionals. Furthermore, we present the 1-time probability of the
generalized Wiener process with natural BC, from which a comparison with the bounded cases
is useful.

2. Finite systems

In section 2 we study a generalized Langevin equation with some special BC onD ≡ [−L,L].

2.1. Periodic boundary condition onD

Definition 1. Let the SDE be

dX0(t)

dt
= U ′(X0) + ξ(t) X0(t) ∈ [−∞,∞] (2.1)

withU ′(X0) ≡ d
dX0
U(X0), U(X0) = U(X0 + 2L) a periodic potential, andξ(t) an arbitrary

noise. The conditional probability distribution associated to (2.1) and satisfying periodic BC
onD can be built up in terms of the method of images [10,11] as:

P(x, t) = W(x)
+∞∑

m=−∞
P0(x + 2mL, t) (2.2)
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whereW(x) is the window function [12]

W(x) =


1 if −L < x < L
1
2 x = ±L
0 if x > L and x < −L

(2.3)

andP0(x, t) is the corresponding probability distribution of the SDE (2.1) with natural BC.

Theorem 1. LetX0(t) be any stochastic realization solution of the unbounded SDE (2.1). The
realizations of the window SP

X(t) =
+∞∑

m=−∞
W(Xm(t))Xm Xm(t) = X0(t) + 2mL (2.4)

satisfy periodic BC onD. Furthermore the conditional probability distribution ofX(t) is
given by the distribution (2.2).

Proof. It is simple to show that the stochastic realizationsX(t) appearing in (2.4) satisfy
periodic BC onD. This can be done by the use of a method of dynamical images.
The realizationsXm(t) = X0(t) + 2mL with {m = 0,±1,±2, . . .} represent unbounded
realizations with initial conditions (images) in the intervals[L, 3L], [3L, 5L], . . . for m =
1, 2, . . .; and in the intervals [−3L,−L], [−5L,−3L], . . . for m = −1,−2, . . . . Thus, due
to the occurrence of thewindow functions in (2.4), there will be alwaysonly onestochastic
realization intoD. We note that to assure that any image has the same potential as the realization
X0(t) inD, it is necessary that the potentialU(X0) be periodic—of periodicity 2L—otherwise
the method of images fails.

In order to prove the second part of the theorem, it is more convenient to first give two
propositions.

Proposition 1. The realizations of the SPX(t) to the powern are:

Xn(t) =
+∞∑

m=−∞
W(Xm(t))X

n
m(t) n ∈ natural. (2.5)

Proof. We prove this proposition by induction. For the first step,n = 1, the proposition is
valid. We assume that for an arbitraryn ( 2.5) is valid and we prove that it is true forn + 1:

Xn+1(t) =
+∞∑

m=−∞
W(Xm(t))X

n
m(t) ·

+∞∑
l=−∞

W(Xl(t))Xl(t)

then (2.5) will be true forn + 1 if W(Xm(t)) ·W(Xl(t)) = δmlW(Xm(t)). It is possible to
show that

W(Xm(t)) ·W(Xl(t)) = 1 if


−L < X0(t) + 2mL < L

and

−L < X0(t) + 2lL < L

(2.6)

otherwise it is null. So from inequality (2.6) it is simple to see that−1< m− l < 1. Therefore
m = l becausem andl are integers. �
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Proposition 2. For any fixed timet the characteristic function of the SPX(t) can be written
as

GX(k, t) =
+∞∑

m=−∞
〈W(Xm(t)) exp ikXm(t)〉 (2.7)

where the average〈. . .〉 represents the average over the ensemble of realizations of the arbitrary
noiseξ(t).

Proof. It follows immediately from the fact that Taylor’s coefficients ofGX(k, t) are the
moments ofX(t), i.e.

〈(X(t))n〉 = (−i)n
dn

dkn
GX(k, t)|k=0 (2.8)

in correspondence with proposition 1. �
Armed with these propositions we can now prove theorem 1. From the definition of

the characteristic functionGX(k, t), its 1-time probability distribution is given by Fourier
inversion. Then from (2.7) follows

P(x, t) =
+∞∑

m=−∞
〈W(Xm(t))δ(Xm(t)− x)〉. (2.9)

By the property of the Dirac delta functionf (x)δ(x − a) = f (a)δ(x − a), the probability
distribution reads

P(x, t) = W(x)
+∞∑

m=−∞
〈δ(Xm(t)− x)〉. (2.10)

Finally from van Kampen’s lemma [1], for any SPX(t) it is true thatP(x, t) = 〈δ(X(t)−x)〉,
thus (2.2) follows. �

Now, from the next proposition it is possible to characterize completely the finite non-
Markovian SPX(t).

Proposition 3. The characteristic function (2.7) can alternatively be written in the form

GX(k, t) =
+∞∑

m=−∞

sin(mπ − kL)
(mπ − kL)

〈
exp i

mπ

L
X0(t)

〉
. (2.11)

Proof. Take the Fourier transform of thewindow function W(x). Then f (p) =∫∞
−∞ dx W(x)e−ipx = 2 sin(pL)/p, thus (2.7) can be slightly rewritten as:

GX(k, t) =
+∞∑

m=−∞

1

2π

∫ ∞
−∞

dp f (p)〈exp i(p + k)Xm(t)〉. (2.12)

Now using thatXm(t) = X0(t) + 2mL, and the Poisson sum [8]:
+∞∑

m=−∞
exp(i2πmx) =

+∞∑
m=−∞

δ(x −m) (2.13)

equation (2.12) can be written as:

GX(k, t) = 1

2π

∫ ∞
−∞

dp f (p)〈exp i(p + k)X0(t)〉
+∞∑

m=−∞
exp i2Lm(p + k)

GX(k, t) =
+∞∑

m=−∞

1

2L
f (p)|p= mπ

L
−k
〈
exp i

mπ

L
X0(t)

〉
.

(2.14)
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Therefore, from the Fourier transform of thewindow function and (2.14), proposition 3 is
true. �

Corollary 3.1. The conditional probability distribution of the SP (2.4) can alternatively be
written in the form

P(x, t) = 1

2L
W(x)

+∞∑
m=−∞

〈
exp i

mπ

L
(X0(t)− x)

〉
. (2.15)

Proof. It follows immediately by using the Fourier transform of (2.11). �

Corollary 3.2. All the 1-time moments and 1-time cumulants of the SP (2.4) can be calculated
if we know the characteristic function of the unbounded SPX0(t).

Proof. Any 1-time moments of the SP (2.4) can be calculated from (2.11) as

〈(X(t))n〉 =
+∞∑

m=−∞
(−i)n

dn

dkn
sin(mπ − kL)
(mπ − kL)

∣∣∣∣
k=0

〈
exp i

mπ

L
X0(t)

〉
. (2.16)

The average quantity—represented in the bracket—is just the characteristic function of
unbounded SPX0(t) evaluated inmπ

L
. From (2.16) all the 1-time cumulants can be calculated

immediately from the diagrammatic technique introduced in appendix A of paper I. �

Corollary 3.3. The whole Kolmogorov hierarchy of distributions of the SPX(t) and alln-time
moments follows from the characteristic functional of the unbounded SPX0(t).

Proof. The proof follows immediately from discrete Fourier transform techniques. For details
see appendix A. �

2.2. Applications to the generalized Wiener process: periodic BC

In this section we make some comments concerning the generalized Wiener processX(t)with
periodic BC onD. Thus, putU = 0 and letξ(t) be an arbitrary noise in (2.1). Because this
system fulfills all the conditions of theorem 1 it applies straightforwardly.

Note that the generalizedtime-dependentWiener process with periodic BC onD, i.e.
characterized by the non-autonomous SDE:Ẋ(t) = γ (t)ξ(t) whereγ (t) is a sure function of
time, can also be calculated in an entirely analogous way, as was commented in paper I (see also
section 3 of this paper for an application to the generalizedtime-dependentOrstein–Uhlenbeck
process on a semi-infinite domain).
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2.2.1. The 1-time probability distribution.Here we exemplify corollary 3.1 for different
noisesξ(t) in the SDEẊ(t) = ξ(t). From corollary 3.1, the conditional probability distribution
of the SP (2.4) is:

P(x, t) = 1

2L
W(x)

+∞∑
m=−∞

exp
(
−i
mπ

L
x
)
GX0

(mπ
L
, t
)
. (2.17)

Note that to use this expression we only need to know the 1-time characteristic function
of the SPX0(t) with natural BC. This object is calculated for several noises in appendix B.

(1) Gaussian non-white noise. From (2.17), (B4) and after a little of algebra the 1-time
probability distribution of SPX(t) is:

P(x, t) = 1

2L
W(x)

{
1 + 2

+∞∑
m=1

cos

[
mπ

L
(x − x0)

]

× exp

[
− 02

2

(
mπ

L

)2

(t + τc(e
−t/τc − 1))

]}
. (2.18)

(2) Dichotomous noise. From (2.17) and (B6) it follows that

P(x, t) = 1

2L
W(x)

{
1 + 2 exp(−λt)

+∞∑
m=1

cos

[
mπ

L
(x − x0)

]
×
[

cosh

(√
λ2 − (mπ

L
a)2t

)
+

λ√
λ2 − (mπ

L
a)2

sinh

(√
λ2 − (mπ

L
a)2t

)]}
(2.19)

wherex0 ∈ D represents the initial condition of the SP with periodic BC.
In figure 1 we have plotted these distributions for two different times (t = 0.8; 3.5). From

these plots we see that at short times and with a dichotomous noise the probability distribution
of the SPX(t) spreads no further than the place reached by the Dirac delta contributions (rare
events). As with natural BC [13] (see appendix B), the two travelling Dirac-deltas appearing
in the probability distribution come from the deterministic realizations ofξ(t), i.e. solutions
of Ẋ(t) = ±a, but now they must satisfy periodic BC onD. Nevertheless, at short times the
process has not been able to feel the presence of the boundaries, thus the distribution probability
at these times is the same as that in the infinite domain. At short times the probability with
Gaussian noise has a faster spreading. This happens because with this noise the SPX(t) is
immediately able to explore all the domainD, in contrast with the Dirac delta frontier for the
dichotomous case.

At the largest time (t = 3.5) and with the dichotomous noise, the Dirac deltas have reached
the frontier ofD and therefore they reappear on the opposite side, producing a step in the
distributionP(x, t) near the frontier. The similarity of this distribution with the Gaussian one
arises because we imposed that both noises had the same amplitudes and the corresponding
noise correlation times were similar (i.e.τc = 0.1 and 1

2λ = 0.5). The main difference is
the Dirac delta contribution. In the asymptotic long-time limit theprobability weight of the
Dirac-deltas is null and therefore the stationary distributionsP(x, t → ∞) are equal. This
asymptotic distribution is a constant over the whole domainD.

(3) Poisson noise. From (2.17) and (B9) the 1-time probability distributions of SPX(t)
is

P(x, t) = 1

2L
W(x)

+∞∑
m=−∞

exp
[
−i
mπ

L
(x − x0) + ρt (eiAmπ

L − 1)
]
. (2.20)
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Figure 1. Probability distribution of the SPX(t) for two values of times (t = 0.8; 3.5) and for two
different structures of noise: Gaussian non-white (dotted curve) and dichotomous (solid curve).
The parameters of the Gaussian non-white noise are:τc = 0.1;02 = 1. The parameters of the
dichotomous noise are:a = 1; λ = 1. For all these plots the initial contidion of SPX(t) isx0 = 0,
the boundary condition on [−L,L] is periodic, and the length of the domain [−L,L] is 2L = 6.
The arrows represent the location of the rare events (Dirac deltas).

Introducing the Taylor expansion of the exponential function and using the Poisson sum (2.13),
results in

P(x, t) = W(x) exp(−ρt)
+∞∑
n=0

(ρt)n

n!

+∞∑
m=−∞

δ(x − x0 − nA− 2Lm). (2.21)

In comparison with the unbounded case (see appendix B), we now have a more complex
selection rule for the allowed values of sitesx. To understand which is this set of sites, we
must bear in mind that what we have solved is the probability distribution of a particle that
at random times does jumps of lengthA > 0 (in the positive direction) and this movement is
confined in a torus (ring) of length 2L. For example, ifx0,A andL are natural numbers, the
set of sites is restricted to the integer numbers in the interval [−L,L]. Therefore, in general,
the movement of the particle is not ergodic onD. Only if A or L are irrational numbers, is
ergodicity onD obtained [14].

Suppose now that we have determined the set of allowed sites{x}. Then from (2.21) it is
possible to quantify the probability to be in each sitex as a function of time

Px(t) = exp(−ρt)
+∞∑
n=0

(ρt)n0(x,x0,A,L)+nT (A,L)

[n0(x, x0, A,L) + nT (A,L)]!
(2.22)

wherePx(t) is a probability (not a distribution) and it is understood thatx is restricted to those
allowed sites in [−L,L]. The functionn0(x, x0, A,L) represents the numbers of steps (of
lengthA) needed to reachx for the first time starting fromx0 and ‘walking’ in the positive
direction. Furthermore,T (A,L) is the ‘time of recurrence’ for a directed random walk in a
torus. This means thatT (A,L) quantifies the number of steps needed to return to an allowed
site x, starting fromx. Therefore a heuristic interpretation of expression (2.22) is obvious.
This equation represents a sum of different paths. The termn = 0 gives the probability of
arriving atx at timet starting inx0. In general, thenth term weights the probability when the
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Figure 2. Probability to be at some allowed site of the set [x], in the ring, as a function of time.
The solid curve corresponds to the valuex = 0 and the dotted curve to the valuex = 7. The
parameters of the Poisson noise are:A = 1; ρ = 1. The length scale of the domain [−L,L] is
2L = 20. The number of allowed sites is then 20.

particle arrives onx at time t having donen cycles on the torus. When the walk is ergodic
the time of recurrence goes to infinity and only the termn = 0 is present in the sum for each
allowed value ofx.

In figure 2 we have plotted the probability (2.22) as a function of time for two different
allowed sitesx. We have chosen the parameters (L = 10,A = 1) in such a way as to get
20 allowed sitesxi ; that is whyPx(t →∞) goes to the value 0.05. Note that the probability
Px0(t → 0) (corresponding to the initial conditionx0) goes to one, as is expected. From
figure 2 we can see that these functions have an oscillatory decreasing behaviour in time. The
period of oscillation is approximately the rate between the recurrenceT (A,L) and the hopping
per unit of timeρ. Furthermore, we see that both probabilities oscillate quite similarly but
with a phase shift.

The intensity of the arriving pulsesA and the length of the ringL are very important
parameters on the dynamics of SPX(t). If the length of the ring is decreased, or if the
intensity is increased, the oscillatory behaviour onPx(t) can disappear. This is because the
number of allowed points is decreased, and so the equilibrium distributionP(x, t → ∞) is
reached faster without any oscillatory behaviour. This is an interesting result which is harder
to derive from (2.22). In fact,Px(t) has a very highly nonlinear dependence on the parameters
L andA. It is interesting to compare these results with the next example: a transport process
in the presence of a radioactive noise, where the stationary distributionP(x, t → ∞) is not
unique.
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Figure 3. Probability distribution of the SPX(t) for two values of timet = 0.125 (solid curve)
and t = 0.3 (dotted curve). The parameters of the radioactive noise are:β = 1; ξ0 = 20. The
initial contidion of SPX(t) is x0 = 0, the domain [−L,L] has periodic boundary conditions, and
its length is 2L = 6. The arrows represents the location of the rare events (Dirac deltas).

(4) Radioactive noise. From (2.17) and (B11) the 1-time probability distributions of SP
X(t) reads:

P(x, t) = 1

2L
W(x)

+∞∑
m=−∞

exp−i
mπ

L
(x − x0)

×
[
β
{exp[(i mπ

L
− β)t ] − 1}

(i mπ
L
− β) + exp

[(
i
mπ

L
− β

)
t
]]ξ0

. (2.23)

In figure 3 we have plotted this probability distribution as a function ofx, for two different
timest (= 0.125; 0.3). In this figure we see, at short times, a packet travelling (at the same
speed) behind the Dirac delta contribution (rare event). As with dichotomous noise, here
this travelling Dirac delta comes from the deterministic realization ofξ(t), i.e. solutions of
Ẋ(t) = ξ0.

At the longest time (t = 0.3) this packet reappeared on the opposite side (due to the
periodic BC) and then reached the initial conditionx0, but still behind the Dirac delta, which
now has a very small intensity. The dynamics of this packet is similar to the movement of a
front. The main difference is that here there is a dispersion, therefore its shape varies with time
until the source of noise has vanished. In the asymptotic long-time limit the probability weight
of the Dirac delta is null, nevertheless the asymptotic distributionP(x, t →∞), in general, is
not constant over the whole intervalD ≡ [−L,L]. This is so due to the nature of the random
‘death’ of the radioactive noiseξ(t). Due to this fact, all the realizations of SPX(t) end with
the particle, at rest, at any random positionxf (with a finite dispersion onx); but the mean
value of these position{xf }, in general, is not zero. This mean value strongly depends of the
parameters of the ring and the noise (L, β, ξ0), showing that the stationary distribution is not
unique.
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2.3. Reflecting boundary condition onD

Definition 2. Let the SDE be
dX0(t)

dt
= U ′(X0) + ξ(t) X0(t) ∈ [−∞,∞] (2.24)

with U ′(X0) ≡ d
dX0
U(X0), U(X0) = U(X0 + 2L) an even periodic potential, andξ(t) an

arbitrary noise. The conditional probability distribution, associated to (2.24) and satisfying
reflecting BC onD can be built up in terms of method of images [10,11] as

P(x, t) = W(x)
+∞∑

m=−∞
{P0(x + 4mL, t) + P0(−x + 4mL + 2L, t)}. (2.25)

As before,W(x) is the window function (2.3), andP0(x, t) is the corresponding probability
distribution of the SDE (2.24) with natural BC.

Theorem 2. LetX0(t) be any stochastic realization solution of the unbounded SDE (2.24).
The realizations of the window SP

X(t) =
+∞∑

m=−∞
W(X+

m(t))X
+
m(t) +W(X−m(t))X

−
m(t) (2.26)

where

X+
m(t) = X0(t) + 4mL X−m(t) = −X0(t) + 4mL + 2L

satisfy reflecting BC. Furthermore, the conditional probability distribution ofX(t) is given by
the distribution (2.25).

Proof. The first part of the theorem is proved with the method of dynamical images. The
explicit constructions of the realizations follows by using the positive and negative images
X+
m(t) andX−m(t). In this case it is necessary that the periodic potentialU(X0) = U(X0 +2L)

be an even function around the origin, otherwise the method of images fails. The proof of the
second part is entirely analogous to that of theorem 1. �

Performing the same steps as we used to obtain the previous propositions and corollaries
(for periodic BC), similar expressions for the characteristic function, conditional probability
and moments can be obtained (see the general expressions in appendix A).

2.4. Applications to the generalized Wiener process: reflecting BC

In this section we study the generalized Wiener process with reflecting BC onD. As in the
previous section, we putU = 0 and letξ(t) be an arbitrary noise in (2.24). Because this
system fulfils all the conditions of theorem 2 it applies straightforwardly.

2.4.1. The first moment.Here we are going to study the mean value of the SP (2.26) for
the same class of noisesξ(t) used before. From appendix A, the final expression for the first
moment is:

〈X(t)〉 = L
+∞∑

m=−∞;m6=0

(−1)
m−1

2

(mπ2 )
2

Im
[
GX0

(mπ
2L

, t
)]

m odd. (2.27)

Once again we remark that to use this expression we only need to know the 1-time
characteristic function of the SPX0(t) with natural BC. This object has been calculated for
several noises in appendix B.



The generalized Wiener process II: Finite systems 4015

Examples.From (B4) and (2.27) we obtain with aGaussian colour noise

〈X(t)〉 = 2L
+∞∑

m=1,m odd

(−1)
m−1

2

(mπ2 )
2

sin
(mπ

2L
x0

)
exp

[−02

2

(mπ
2L

)2
(t + τc(e

−t/τc − 1))

]
.

(2.28)

Using (B6) and (2.27) we obtain with adichotomous noise†

〈X(t)〉 = 2L exp(−λt)
+∞∑

m=1,m odd

(−1)
m−1

2

(mπ2 )
2

sin
(mπ

2L
x0

)

×
cosh

(√
λ2 −

(mπ
2L

a
)2
t

)
+

λ√
λ2 − (mπ2L a)

2
sinh

(√
λ2 −

(mπ
2L

a
)2
t

) .
(2.29)

Using (B9) and (2.27) we obtain with aPoisson noise

〈X(t)〉 = 2L
+∞∑

m=1,m odd

(−1)
m−1

2

(mπ2 )
2

exp
[
ρt
(
cos

(
A
mπ

2L

)
− 1

)]
sin
[
ρt sin

(
A
mπ

2L

)
+
mπ

2L
x0

]
.

(2.30)

Using (B11) and (2.27) we obtain with aradioactive noise

〈X(t)〉 = L
+∞∑

m=−∞;m6=0

(−1)
m−1

2

(mπ2 )
2

Im

[[
β

expt (i mπ2L − β)− 1

i mπ2L − β

+ expt
(
i
mπ

2L
− β

)]ξ0

exp i
mπ

2L
x0

]
m odd. (2.31)

In all the examplesx0 ∈ D is the initial condition of the SPX(t) with reflecting BC.

Figure 4 shows the comparison of the first moment〈X(t)〉 for two different structures of
noise, and different noise correlation times (τc = 0.1; 10 for the Gaussian colour-noise, and
λ−1 = 1; 10 for the dichotomous case—solid curves).

In presence of aGaussian colour noiseξ(t), a typical monotonous relaxation for〈X(t)〉 is
obtained, i.e. (2.28). For largerτc the relaxation gets slower, and this is so because the particle
has more memory to remember its initial condition, and therefore a plateau appears at very
short times. This phenomenon is a non-Markovian effect of the SPX(t). In the limit of a very
long correlation noise (i.e.τc � 1) the shape of the function〈X(t)〉 is almost constant during
a large period of timeO(τc). In contrast, if we increase the noise parameter02, the relaxation
gets faster. This is also an intuitive result, because when the intensity of the noise is increased
the whole domainD is visited much faster (the SPX(t) spreads faster). In any case, by using
aGaussiannoise the relaxation is a monotonous decreasing function of time. We remark that
this is not the case if the structure of the noise is non-Gaussian as in (2.29).

Basically, if the correlation time of thedichotomous noiseλ−1 is small, the relaxation
of 〈X(t)〉 is the same as with a Gaussian noise (we have used different initial conditions:
x0 = ±2 in order to highlights both curves). Nevertheless, when the noise correlation time
λ−1 is sufficiently long, owing to the nature of thedichotomous noise, there will be rare events
due to thespecialrealizationsξ(t) = ±a (with a probability weight∝ e−λt ) that survive for

† This expression can be obtained from formulae (19) of [7] with the following steps: a translation of lengthL,
changesL→ 2L, 1/2T → λ, c→ a, and takeα = 1

2 . Furthermore, formulae (19) of [7] can be obtained from (A7)
(with dichotomous noise) with the same procedure.
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Figure 4. First moment of the SPX(t) as a function of timet for two different noisesξ(t). Dotted
curves correspond to the presence of a Gaussian non-white noise with parameters:02 = 1; τc = 0.1
and τc = 10 (long plateau); there the initial condition of SPX(t) is x0 = −2. Solid curves
correspond to the presence of a dichotomic noise with parameters:a = 1; λ−1 = 1 andλ−1 = 10
(with oscillations); there the initial condition isx0 = 2. In all these plots the boundary conditions
are reflecting on [−L,L] and the length of the domain is 2L = 6.

a long time. Thesedeterministicnoise realizations are the responsibility of the oscillations in
the mean value of SPX(t). If we increase the parameterλ, the correlation time gets shorter
and shorter and this can ‘kill’ any reminiscence of thedeterministic realizationsξ(t) = ±a.
Therefore, there is a thresholdλ−1 6 critical value below which the oscillatory behaviour
of 〈X(t)〉 does not exist any more, and then the relaxation of〈X(t)〉 is the same as in the
presence of a Gaussian noiseξ(t). Finally we note that there always exists—at short times—a
plateau in the behaviour of〈X(t)〉. This phenomenon comes from the symmetry of the noise
and the fact that no realizations spread more than the deterministic realizations. Therefore,
until any of the Dirac deltas has reached some frontier, the behaviour of〈X(t)〉 is the same as
with natural BC, i.e. it remains constant.

In figure 5 we show〈X(t)〉 in the presence of aPoisson noise, i.e. (2.30). In this figure we
have used the initial conditionx0 = 0 and we have plotted three different cases by changing the
amplitudeA of the noise pulse. For this case we see that at short times the first-moment〈X(t)〉
is an increasing function of time; this is so because the noiseξ(t) is a sequence of random
pulses (with intensityA) arriving in the same direction. After this transient has finished, the
relaxation shows a decaying oscillatory behaviour, but now this oscillatory behaviour is always
present and is due to BC onD. For a fixed lengthL but increasing intensityA, the amount of
allowed points (the set{xi}) is reduced, therefore the stationary distributionP(x, t →∞) is
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Figure 5. First moment of the SPX(t) as a function of time for a Poisson noiseξ(t). The
parameters are:ρ = 1; A = 1 (solid curve);A = 1.5 (dashed curve) andA = 2 (dotted curve).
The initial condition isx0 = 0 and the boundary conditions are reflecting on [−L,L]. The length
of the domain is 2L = 6.

reached faster and this leads to the fact that the relaxation of〈X(t)〉 goes to zero faster too.
This fact can also be seen from our plots.

In figure 6 we show the case when the noise is aradioactiveone, i.e. (2.31). In this
figure we have used the initial conditionx0 = 0 and we have plotted three different cases
by changing the initial noise quantityξ0 (= 5; 10; 20), i.e. the initial amount of atoms in the
jargon of the radioactive noise. The increasing behaviour—at short times—of the function
〈X(t)〉 is due to the fact that the radioactive noise is a constant force that at random times
decreases a finite quantity (non-symmetric noise). If the numberξ0 is small, the source of
noise could vanish before the particle (the SPX(t)) can reach the frontier ofD, therefore the
behaviour of〈X(t)〉 would be similar to the case in the presence of natural BC. If the quantity
ξ0 is large enough, the effect of the reflecting BC starts to be important and the behaviour
of 〈X(t)〉 turns out to be oscillatory. This change in the behaviour—from non-oscillatory to
oscillatory—can also be obtained by changing the correlation time of the radioactive noise
β−1. The analysis turns out to be equivalent to the one coming from dichotomous noise: by
increasingβ−1 thedeterministicrealizationξ(t) = ξ0 starts to be important (now there will be
only one Dirac delta), therefore in the limitβ−1→∞ the behaviour of〈X(t)〉 is asaw tooth.
When the correlation timeβ−1 gets shorter than acritical value the relaxation does not show
any oscillatory behaviour owing to the fast loss of the deterministic realization.

The long-time limit of the first moment ofX(t) is non-null because the probability
distribution, in general, is not uniform onD. In particular, with increasingξ0 the asymptotic
long-time limit of〈X(t)〉 gets closer to zero. This is so because by increasing this quantity, the
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Figure 6. First moment of the SPX(t) as a function of time for a radioactive source of noiseξ(t),
with parameterβ = 1. In all these cases the initial condition of SPX(t) wasx0 = 0. The solid
curve corresponds to a presence ofξ0 = 5 initial atoms. The dashed curve corresponds toξ0 = 10,
and the dotted curve to the caseξ0 = 20. In all these plots the boundary conditions are reflecting
on [−L,L] and the length of the domain is 2L = 6.

‘live-time’ of the noise is larger, and due to the BC this fact increases the dispersion of the final
positionxf of the particle. Then the mean value of these random positions{xf } approaches
zero. A similar phenomenon was also explained with periodic BC, see (2.23).

3. Semi-infinite domain

In this section we study a generalized Langevin equation with a reflecting boundary condition
at the coordinate origin, so the domain of interest will be [0,∞]. The characterization of this
case can be made from theorem 2, with the following steps: a translation of lengthL, change
L to 2L and take the limitL→∞. Alternatively, all results can be obtained from the explicit
construction of the realizations satisfying reflecting BC in the origin. The constructions of
these realizationsY (t) follows by the use of a negative mirror image—around the origin—of
the positive one

Y (t) = 2(Y0(t))Y0(t)−2(−Y0(t))Y0(t) (3.1)

where2(y) is the step function andY0(t) are the realization of the unbounded process

dY0(t)

dt
= U ′(Y0) + ξ(t) Y0(t) ∈ [−∞,∞]. (3.2)

From this procedure it is obvious that now it is required that the potentialU (Y0) be an even
function around the origin, otherwise the method of image fails.

From (3.1), use the following result for the mean value:

〈Y (t)〉 = −1

π
P
∫ ∞
−∞

1

k

d

dk
〈exp ikY0(t)〉 dk = −1

π
P
∫ ∞
−∞

1

k

d

dk
GY0(k, t)dk. (3.3)
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3.1. Application to the generalized Ornstein–Uhlenbeck process

Here we are going to study the generalized Ornstein–Uhlenbeck process on a semi-infinite
domain, with reflecting BC at the origin of coordinates. Thus we takeU ′ → U ′(V ) = −γ1(t)V

andξ → γ2(t)ξ(t) in (3.2). So here we propose to study the non-autonomous SDE:

d

dt
V (t) = −γ1(t)V + γ2(t)ξ(t). (3.4)

As usual we adopt that therandom forceis any noise completely characterized by its functional
Gξ([k(t)]) andγ2(t) andγ1(t) are sure functions of the time. A complete characterization of
the unbounded SPV (t) follows from proposition 2 of paper I. There we proved that

GV ([Z(t)]) = e+ik0V (0) Gξ

([
γ2(t)

∫ ∞
t

e
∫ t
t
′ γ1(s) dsZ(t ′) dt ′

])
(3.5)

wherek0 =
∫∞

0 Z(s) exp(− ∫ s0 γ1(t) dt) ds, andξ(t) is characterized by its functional.
Now we want to exemplify the application of (3.3) to evaluate〈V (t)〉 when ξ(t) is a

Gaussian colour noise (with arbitrary correlation〈ξ(t1)ξ(t2)〉, for details see appendix B).
After some algebra, the exact first moment reads†

〈V (t)〉 = 2

√
σ(t)

π
exp

(−B(t)2
4σ(t)

)
+B(t)erfc

( −B(t)
2
√
σ(t)

)
t > 0 (3.6)

〈V (0)〉 = B(0) > 0, and whereσ(t) andB(t) are functions of time given by

σ(t) ≡ 02

2

∫ t

0

∫ t

0
ds1 ds2 γ2(s1)γ2(s2)e

∫ s1
t
γ1(s

′
) ds
′
e
∫ s2
t
γ1(s

′
) ds
′ 〈ξ(s1)ξ(s2)〉

B(t) ≡ V (0)e−
∫ t

0 γ1(s
′
) ds
′
.

(3.7)

One of the simplest cases to analyse is whenγ1(t) = γ , γ2(t) = 1 and the Gaussian
noise has a short-range correlation, i.e.〈ξ(t)ξ(t ′)〉 = 1

2τc
exp(−|t − t ′ |/τc). In this particular

autonomous case, the first moment〈V (t)〉 is given by (3.6), withB(t) = V (0)e−γ t and

σ(t) = 02

4γ

{
1− e−2γ t

1− τ 2
c γ

2
+
γ τc(2e−(γ+ 1

τc
)t − e−2γ t − 1)

1− τ 2
c γ

2

}
. (3.8)

This expression is valid for anyτc > 0 andγ > 0. Note that both summands in (3.8)
have non-Markovian contributions. In the limitτc = 0 this expression coincides with the well
known result that could be obtained from Fokker–Planck dynamics:σ(t) = 02

4γ (1− e−2γ t ).
An interesting result is the fact that the non-Markovian effect (τc 6= 0) shifts—towards smaller

values—the long-time limit of the first moment〈V (t →∞)〉 =
√

02
γπ

1
1+γ τc

. On the other hand,

the presence of a Gaussian colour noise induces a resonant-like behaviour at the correlation
valueτc = 1/γ . This can be seen by taking the suitable limit in (3.8), which is—of course—a
pure non-Markovian effect.

3.2. Application to the generalized Wiener process

Here we want to show another possible application of (3.3), but when the SDE isẊ(t) = ξ(t).
First we analyse the case whenξ(t) is a Gaussian colour noise. In appendix B we have given

† We have usedP
∫∞
−∞(ix)

ν exp(−β2x2− iqx) dx = 2−ν/2
√
π β−ν−1 exp

(−q2

8β2

)
Dν

(
q

β
√

2

)
, for Re [β] > 0, where

Dν(z) is the Dyson special function.
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the characteristic function for the unbounded SPX0(t). Thus from (3.3) and (B4) the first
moments reads

〈X(t)〉 = 2

√
σ(t)

π
exp

(−X(0)2
4σ(t)

)
+X(0)erfc

( −X(0)
2
√
σ(t)

)
(3.9)

where

σ(t) = 02

2
(t + τc(e

−t/τc − 1)) (3.10)

andX(0) > 0 is the initial condition. We note that this result can also be obtained from
(3.6), by puttingγ1(t) = 0, γ2(t) = 1 (or alternatively from (3.8) taking the limitγ → 0).
Equation (3.10) shows that the non-Markovian character (τc 6= 0 ) in the relaxation of〈X(t)〉
survives only for a time ofO(τc), as was expected. Therefore, in the long-time limit, Wiener’s
root square scaling is obtained,〈X(t)〉 ∼ √t .

The Wiener particle can easily be reobtained by taking the limitτc → 0 in (3.9). In
this case our result, of course, coincides with the one obtained from the diffusion equation:
∂tP (x, t) = 02

2 ∂
2
xP (x, t), considering a reflecting boundary condition onx = 0.

Finally, we analyse the particular case whenξ(t)has a non-Gaussian structure, for example
when it is the sum of two statistical independent Poisson noises±ξ(t)with intensityA and with
average numbers of pulsesρ. In the limitρ →∞ andA→ 0 such thatρA2→ 02/2= finite
this noise reduces to a zero-mean Gaussian white noise. From appendix B it is simple to see
that the corresponding characteristic function of the unbounded generalized Wiener process is

GX0(k, t) = e+ikX0(0) exp[2ρt (cosAk − 1)]. (3.11)

Now, from the application (3.3) (for the caseU = 0) and using (3.11), the exact first
moment〈X(t)〉 is given by

〈X(t)〉 = 2Aρt exp(−2ρt)[I0(2ρt) + I1(2ρt)] (3.12)

where I0(z), I1(z) are modified Bessel functions and we have used the initial condition
X(0) = 0. From this expression it is possible to see that—induced by the non-Gaussian
structure of the noiseξ(t)—the behaviour of〈X(t)〉 shows a very long transient, but its
asymptotic long-time limit gives〈X(t)〉 ∼ A√ρt . We remark that in this analysis we have
not taken the Gaussian limit, which is why the parametersρ andA are still present in the
relaxation of the first moment. However, if the intensity of the arriving pulses is very large and
its density is small (i.e. in the limitA → ∞ andρ → 0 with ρA → constant), from (3.12)
a (temporal) linear behaviour〈X(t)〉 ∼ t is obtained, in contrast with the familiar Wiener
root-square scaling. In summary, a non-Gaussian but white-noiseξ(t) like the Poisson one,
only induces a long transient, but Wiener’s universal scaling〈X(t)〉 ∼ √t is still present at
long time. We expect that other structures of noise could drive to similar conclusions. Only
long-range noise correlation will change the long-time scaling of〈X(t)〉.

4. Conclusions

The goal addressed in this paper—by proving our theorems—has been to be able to give an
exact closed characterization of a large class of finite non-Markovian processes that follows
the evolution:dX(t)

dt = U ′(X) + ξ(t), whenξ(t) is an arbitrary noise.
Assuming that the functionalGX0([Z(t)]) of the Langevin-like unbounded SPX0(t) is

known, the generalized processX(t) on the finite domainD ≡ [−L,L] has been completely
characterized for periodic and reflecting BC onD. We have given exact expressions for
the whole Kolmogorov hierarchy, from which all the information concerning mean values,
stationary distributions, correlations functions, etc. can be analysed.
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Owing to the fact that the SPX0(t) could be non-Markovian, there is not a clear
partial differential equation available for itsn-time probability distribution. Thus, in order
to characterize the SPX(t) we have explicitly constructed stochastic realizations that satisfy
the corresponding BC. This was made by using a method of dynamical images by defining
thewindow SPpresented through theorems 1 and 2. We remark that this method only works
when the corresponding periodicity conditions, on the potentialU , are fulfilled.

We have exemplified the method puttingU = 0. This corresponds to the generalized
Wiener process where the unbounded characteristic functional is available from paper I. There
we have introduced a fairly general method based upon knowing the characteristic functional
of the arbitrary noiseGξ([k(t)]) (see also appendix B of this paper).

In order to find the interplay between non-Gaussian noises and the effects of the frontier of
D, some examples with non-Gaussian structures of noise have been worked out. In particular,
we have used dichotomous noise, Poisson noise and radioactive noise. It is interesting to note
that as with the dichotomous noise [7], the radioactive noise could have important medical
applications.

With periodic BC we have studied the 1-time probability distribution. This was shown in
figures 1 and 3, from which there are some results to remark on. One is the presence ofrare
eventscorresponding to the permanence ofδ contributions in the probability distribution (for
t > 0). The occurrence of these rare events also appears in the unbounded case owing the
existence of deterministic realizations. The relation between the motion of theseboundaries
in the probability distribution (δ contributions) and the structure of the noise appearing in
its corresponding SDE has been pointed out. On the other hand, the oscillatory behaviour
(in the presence of Poisson noise) and the presence of travelling packets (in the presence of
radioactive noise) in the probability distributionP(x, t) are shown to be consequences of the
highly non-Gaussian character of the noise.

With reflecting BC, the emphasis was on the characterization of the mean values, i.e. by
analysing some exact results for the moments ofX(t). Many aspects of the evolution are
evident in figures 4–6. One of the most important is the oscillatory behaviour of the moments,
a phenomenon that never can be reached with a Gaussian (colour or white) noise.

The generalized Ornstein–Uhlenbeck process on a semi-infinite domain and with reflecting
BC at the coordinate origin has also been analysed.

We emphasize that the present formulation is exact and provides a systematic starting point
to obtain higher-order moments, and the whole Kolmogorov hierarchy for a large class of non-
Markovian process onfinite domains. We remark that in this analysis the only object which
it is necessary to know is the characteristic functional of the unbounded processGX0([Z(t)]).
In this paper we have used previous results (from paper I) on functional techniques to solve a
related problem but now in the presence of non-natural BC.
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Appendix A. The Kolmogorov hierarchy

We remarked in paper I that a complete characterization of a non-Markovian SPX(t) demands
the knowledge of the whole Kolmogorov hierarchy, i.e. then-time joint probability distribution
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P(x1, t1; x2, t2; . . . ; xn, tn), or equivalently the characteristic functionalGX([Z(t)]). From
this functional all then-time moments can be calculated bynth order functional differentiation
(and, of course, theirn-times cumulants too). Here we want to emphasize that if we know
a closed expression of the functionalGX([Z(t)]), this fact implies knowledge of the whole
Kolmogorov hierarchy. This issue is simple to realize by introducing the Fourier representation
of theδ-function in the following expression [1]:

P(x1, t1; x2, t2; . . . ; xn, tn) = 〈δ(X(t1)− x1)δ(X(t2)− x2) . . . δ(X(tn)− xn)〉.
For example, the 1-time probability distributionP(x1, t1) is given by quadrature in terms

of theGX([Z(t)]) evaluated with the test functionZ(t) = k1δ(t − t1). In general, we can
invert the characteristic functional by introducing then-dimensional Fourier transform

P(x1, t1; x2, t2; . . . ; xn, tn) = 1

(2π)n

∫
. . .

∫
dk1 . . .dkn exp

(
− i

n∑
i=1

kixi

)
×[GX([Z(t)])]Z(t)=k1δ(t−t1)+···+knδ(t−tn). (A1)

This formula is sometimes remarkably simple to work out in comparison with the
calculation of then-time joint probability distribution given in terms of a series expansion
that we made in paper I.

Appendix A.1. Non-Markovian processes with special boundary conditions

In this case we are not able to construct the characteristic functional of the processes,
nevertheless, we can construct for each naturaln then-time joint probability distribution.

First of all, note that what we need in (A1) is then-time characteristic function of the
process, i.e.

GX(k1, t1; k2, t2; . . . ; kn, tn) = [GX([Z(t)])]Z(t)=k1δ(t−t1)+···+knδ(t−tn) (A2)

i.e. we have information on then-time moment

〈X(t1)X(t2) . . .X(tn)〉 = (−i)n
∂n

∂k1∂k2 · · · ∂knGX(k1, t1; k2, t2; . . . ; kn, tn)
∣∣∣∣
k1=k2=...kn=0

.

(A3)

Now it is simple, using our previous propositions, to write down this object for a finite
system characterized with some special BC on the domainD = [−L,L]. For example,
if the BC is periodic onD, proposition 3 tells how to built up the 1-time characteristic
function if we know the characteristic function of the unbounded SPX0(t), i.e.GX0(k1, t1) =
〈exp ik1X0(t1)〉. The same procedure is easy to generalize for anyn-time characteristic
function, using the property (A3) and following the same steps as in propositions 2 and 3.
Then-time characteristic function of a finite system with periodic BC results:

GX(k1, t1; k2, t2; . . . ; kn, tn) =
+∞∑

m1=−∞
. . .

+∞∑
mn=−∞

sin(m1π − k1L)

(m1π − k1L)
. . .

sin(mnπ − knL)
(mnπ − knL)

×GX0

(m1π

L
, t1; . . . ; mnπ

L
, tn

)
(A4)

where

GX0

(m1π

L
, t1; . . . ; mnπ

L
, tn

)
= [GX0([Z(t)])]Z(t)= m1π

L
δ(t−t1)+···+mnπ

L
δ(t−tn)

follows from the unbounded characteristic functional.
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Now introducing (A4) in (A1) then-time joint probability results:

P(x1, t1; x2, t2; . . . ; xn, tn) = 1

(2L)n

[ n∏
i=1

W(xi)

] +∞∑
m1=−∞

. . .

+∞∑
mn=−∞

exp

(
− i

n∑
i=1

miπ

L
xi

)
×GX0

(m1π

L
, t1; . . . ; mnπ

L
, tn

)
. (A5)

If the BC are reflecting, then by making similar steps as the ones made to arrive to
equation (A4), the following expression for then-time characteristic function can be obtained:

GX(k1, t1; k2, t2; . . . ; kn, tn) = 1

2n

+∞∑
m1=−∞

. . .

+∞∑
mn=−∞

sin(m1π
2 − k1L)

(m1π
2 − k1L)

. . .
sin(mnπ2 − knL)
(mnπ2 − knL)

×
∑
σ1=±1

. . .
∑
σn=±1

(−1)(
∑n

i=1miδ(−1,σi ))GX0

(
σ1
m1π

2L
, t1; . . . ; σnmnπ

2L
, tn

)
. (A6)

Therefore, then-time probability distribution is in this case

P(x1, t1; x2, t2; . . . ; xn, tn) = 1

(4L)n

[ n∏
i=1

W(xi)

] +∞∑
m1=−∞

. . .

+∞∑
mn=−∞

exp

(
− i

n∑
i=1

miπ

2L
xi

)
×
∑
σ1=±1

. . .
∑
σn=±1

(−1)(
∑n

i=1miδ(−1,σi ))GX0

(
σ1
m1π

2L
, t1; . . . ; σnmnπ

2L
, tn

)
. (A7)

We remark that (A4)–(A7) are exact expressions, valid whatever the structure of the noise
ξ(t) is. From these expressions the whole Kolmogorov hierarchy and anyn-time moment
is available. This fact follows fromnth partial differentiation of then-time characteristic
functions.

Appendix B. The generalized Wiener process on unbounded domains

In this appendix we show some results concerning the generalized Wiener process with natural
BC and for different noises. A more formal presentation is available in paper I.

Let GX0([k(t)]) = 〈exp i
∫∞

0 k(t)X0(t) dt〉 be the characteristic functional of the
generalized Wiener SPX0(t) in an unbounded domain, i.e. characterized by the SDE:
d
dt X0(t) = ξ(t), X0(t) ∈ [−∞,∞]; with t ∈ [0,∞], whereξ(t) is some arbitrary noise
characterized by its functionalGξ([k(t)]), andk(t) is restricted to those real test functions that
vanish for sufficiently larget . Proposition 3 of paper I tells that the generalized SPX0(t) (with
natural BC) and with a sure (non-random) initial conditionX0(0) is completely characterized
by the functional

GX0([Z(t)]) = e+ik0X0(0)Gξ

([∫ ∞
t

Z(s) ds

])
(B1)

wherek0 is given byk0 =
∫∞

0 Z(s) ds. The generalizedtime-dependentWiener process, i.e.
the one characterized by the non-autonomous SDEẊ0(t) = γ (t)ξ(t) whereγ (t) is a sure
function of time, is characterized by the functional

GX0([Z(t)]) = e+ik0X0(0)Gξ

([
γ (t)

∫ ∞
t

Z(t ′) dt ′
])

(B2)

wherek0 is as before:k0 =
∫∞

0 Z(s) ds. This follows from propositions 2 and 3 of paper I.
The 1-time characteristic function of the unbounded SPX0(t), denoted byGX0(k1, t1) =

〈exp ik1X0(t1)〉, follows from evaluating (B1) (or from (B2) for thetime-dependentcase) with
the test functionZ(t) = k1δ(t − t1). From this characteristic function, the 1-time probability
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distributionP(x1, t1) can be obtained by Fourier inversion. In what follows we exemplify
these objects for different structures of noiseξ(t).

Example 1. Let ξ(t) be a zero-meanGaussian colour noisewith an arbitrary correlation
〈ξ(t)ξ(t ′)〉. Its characteristic functional isGξ([k(t)]) = exp−02

2

∫∞
0

∫∞
0 k(s1)k(s2)

〈ξ(s1)ξ(s2)〉 ds1 ds2. Taking 〈ξ(t)ξ(t ′)〉 = 1
2τc

exp(−|t − t
′ |/τc) and using (B1), the

characteristic functional of the unbounded SPX0(t) with t ∈ [0,∞] can be written in the
form:

GX0([Z(t)]) = e+ik0X0(0) exp

[−02

2

∫ ∞
0

ds1

∫ ∞
0

ds2

∫ ∞
s1

Z(s ′) ds ′
∫ ∞
s2

×Z(s ′′) ds ′′
1

2τc
exp(−|s1− s2|/τc)

]
. (B3)

Introducing the test functionZ(t) = k1δ(t − t1) in (B3) we get the 1-time characteristic
function of the unbounded SPX0(t)

GX0(k1, t1) = exp

[−02

2
k2

1[t1 + τc(e
−t1/τc − 1)] + ik1X0(0)

]
. (B4)

From this formula, the 1-time probability distributionP(x1, t1) is given by

P(x1, t1) = [4πσ(t1)]
−1/2 exp[−(x1−X0(0))

2/4σ(t1)] (B5)

whereσ(t1) ≡ 02
2 (t1 + τc(e−t1/τc −1)). Note from (B4) or (B5) that for a finite timet the scale-

invarianceX(t) = 1√
3
X(3t), familiar from the Wiener process, is broken for anyτc 6= 0. The

Gaussian white noiseξ(t) case can trivially be reobtained by taking the limitτc → 0. In this
limit (B5) gives a result which could be also obtained from the well known diffusion equation
∂tP (x, t) = 02

2 ∂
2
xP (x, t).

Example 2. A dichotomous noiseξ(t) has not a closed expression for its characteristic
functional Gξ([k(t)]); this functional can only be written in terms of an infinite series
[6]. Nevertheless, closed expressions for the 1-time characteristic function and the 1-time
probability distribution can be found [1,13]:

GX0(k1, t1) = exp(−λt1 + ik1X0(0))

[
cosh(γk1t1) +

λ

γk1

sinh(γk1t1)

]
(B6)

whereγk1 =
√
λ2 − (k1a)2 and

P(x1, t1) = 1
2 exp(−λt1)δ(x1− x0 − at1) + 1

2 exp(−λt1)δ(x1− x0 + at1)

+
λ

2a
exp(−λt1)2

(
t1 +

x1− x0

a

)
2

(
t1− x1− x0

a

)

×
I0

λ
√
t21 −

(
x1− x0

a

)2


+
t1√

t21 −
(
x1−x0
a

)2 I1
λ
√
t21 −

(
x1− x0

a

)2
 . (B7)

Here I0(z) and I1(z) are the modified Bessel functions [12] andx0 is the initial condition.
This expression is valid for a stationary dichotomous noise, i.e. when its correlation function is
characterized by〈ξ(t)ξ(t ′)〉 = a2 exp(−2λ|t−t ′ |), wherea is the amplitude of the dichotomous
noise. The two travelling Dirac deltas appearing in the probability distribution come from the



The generalized Wiener process II: Finite systems 4025

deterministic realizations ofξ(t), i.e. solutions ofẊ0(t) = ±a. Of course these Dirac deltas
are attenuated in time by an exponential factor controlled for the parameterλ (the hopping
rate of the dichotomous noise).

Example 3. A Poisson noiseξ(t) (i.e. a Campbell’s white shot noise [1, 2, 6, 15]) has the
characteristic functionalGξ([k(t)]) = expρ

∫∞
0 (exp(iAk(t))− 1) dt ; whereρ represents the

average number of events (pulses) per unit of time, andA is the amplitude of the Dirac pulses.
In this case, the SPX0(t) gives a simple jump process (jumps of amplitudeA from the initial
condition) with a Poisson distribution in the time axis. Its characteristic functional is given by

GX0([Z(t)]) = e+ik0X0(0) expρ
∫ ∞

0

(
exp

(
iA
∫ ∞
t

Z(s) ds

)
− 1

)
dt (B8)

from which follows

GX0(k1, t1) = exp[ρt1(e
iAk1 − 1) + ik1X0(0)]. (B9)

Example 4. A radioactive noiseξ(t) has the characteristic functional [6, 16]Gξ([k(t)]) =
[β
∫∞

0 exp(−tβ + i
∫ t

0 k(s) ds) dt ]ξ0. Hereξ0 represents the number of active nucleus att = 0,
andβ is the probability per unit of time that an individual decay occurs. This particular noise
is not stationary and at long-time the noise is always null. Using this radioactive noise, from
(B1) the characteristic functional of the unbounded SPX0(t), reads

GX0([Z(t)]) =
[
β

∫ ∞
0

exp

(
− tβ + i

∫ t

0
ds
∫ ∞
s

Z(u) du

)
dt

]ξ0

e+ik0X0(0). (B10)

Therefore we get for the characteristic function

GX0(k1, t1) =
[
β

exp[(ik1− β)t1] − 1

ik1− β + exp[(ik1− β)t1]

]ξ0

exp ik1X0(0). (B11)

Using Newton’s binomial, the 1-time probability distributionP(x1, t1) is given by†

P(x1, t1) = exp(−βξ0t1)δ(x1−X0(0)− ξ0t1) + exp[−β(x1−X0(0) )]

×
ξ0∑
n=1

βn
(
ξ0

n

) n∑
m=0

(−1)m+n

0(n)

(
n

m

)
[x1−X0(0)− (ξ0 −m)t1]n−1. (B12)

As in the dichotomous noise case, here the travelling Dirac delta—in the probability
distribution—comes from the deterministic realization of the noise:ξ(t) = ξ0 (i.e. the
solution ofẊ0(t) = ξ0). Now, this Dirac delta is attenuated in the time by an exponential
factor controlled by the productβξ0. This is because the probability to lose the deterministic
realization is proportional to the occurrence of an individual decay, and there areξ0 different
ways that can occur.
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